Decompositions of a rectangle into non-congruent rectangles of equal area
نویسندگان
چکیده
In this paper, we deal with a simple geometric problem: Is it possible to partition rectangle into k non-congruent rectangles of equal area? This problem is motivated by the so-called ‘Mondrian art problem’ that asks similar question for dissections integer sides. Here, generalize Mondrian allowing real case, show minimum value have ‘perfect partition’ (that is, equal-area rectangles) seven. Moreover, prove such unique (up symmetries) and there exist exactly two proper perfect partitions k=8. Finally, also any square has decomposition k≥7.
منابع مشابه
Partitioning a rectangle into small perimeter rectangles
Alon, N. and D.J. Kleitman, Partitioning a rectangle into small perimeter rectangles, Discrete Mathematics 103 (1992) 111-119. We show that the way to partition a unit square into kZ + s rectangles, for s = 1 or s = -1, so as to minimize the largest perimeter of the rectangles, is to have k 1 rows of k identical rectangles and one row of k + s identical rectangles, with all rectangles having th...
متن کاملa study of translation of english litrary terms into persian
چکیده هدف از پژوهش حاضر بررسی ترجمه ی واژه های تخصصی حوزه ی ادبیات به منظور کاوش در زمینه ی ترجمه پذیری آنها و نیز راهکار های به کار رفته توسط سه مترجم فارسی زبان :سیامک بابایی(1386)، سیما داد(1378)،و سعید سبزیان(1384) است. هدف دیگر این مطالعه تحقیق در مورد روش های واژه سازی به کار رفته در ارائه معادل های فارسی واژه های ادبی می باشد. در راستای این اهداف،چارچوب نظری این پژوهش راهکارهای ترجمه ار...
15 صفحه اولThe Decomposition of a Rectangle into Rectangles of Minimal Perimeter
We solve the problem of decomposing a rectangle R into p rectangles of equal area so that the maximum rectangle perimeter is as small as possible. This work has applications in areas such as flexible object packing and data allocation. Our solution requires only a constant number of arithmetic operations and integer square roots to characterize the decomposition, and linear time to print the de...
متن کاملMinimum perimeter rectangles that enclose congruent non-overlapping circles
We use computational experiments to find the rectangles of minimum perimeter into which a given number, n, of non-overlapping congruent circles can be packed. No assumption is made on the shape of the rectangles. In many of the packings found, the circles form the usual regular square-grid or hexagonal patterns or their hybrids. However, for most values of n in the tested range n ≤ 5000, e.g., ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2021
ISSN: ['1872-681X', '0012-365X']
DOI: https://doi.org/10.1016/j.disc.2021.112389